The relaunch of Galaxy Zoo doesn't only include the fantastic new images from the CANDELS survey on Hubble Space Telescope, but also includes over 200,000 new local galaxies from the Sloan Digital Sky Survey. We've had a lot of questions about where these galaxies came from and why they weren't put into earlier versions of Galaxy Zoo, so I thought I'd write a bit about these new images.
The Sloan Digital Sky Survey Project (SDSS) is currently in its 3rd phase (SDSS-III). You can read all about the history of SDSS here, and here, but briefly SDSS-I (2000-2005) and SDSS-II (2005-2008) took images of about a quarter of the sky (which we often refer to as the SDSS Legacy Imaging), and then measured redshifts for almost 1 million galaxies (the "Main Galaxy Sample", which was the basis of the original Galaxy Zoo and Galaxy Zoo 2 samples; plus the "Luminous Red Galaxy" sample) as well as 120,000 much more distant quasars (very distant galaxies visible only as point source thanks to their actively accreting black holes).
Following the success of this project, the Sloan Digital Sky Survey decided they wanted to do more surveys, and put together a proposal which had four components (BOSS, SEGUE2, MARVELS and APOGEE - see here). To meet the science goals of these projects they realised they would need more sky area to be imaged. This proposal was funded as SDSS-III and started in 2008 (planned to run until 2014).
The first thing this new phase of SDSS did was to take the new imaging. This was done using exactly the same telescope and camera (and methods) as the original SDSS imaging. They imaged an area of sky called the "Southern Galactic cap". This is part of the sky which is visible from the Northern Hemisphere, but which is out the Southern side of our Galaxy's disc. It totals about 40% of the size of the original SDSS area, brining the total imaging area up to about 1/3rd of the whole sky. The images in it were publicly released in January 2011 as part of the SDSS Data Release 8 (DR8 - so we sometimes call it the DR8 imaging area).
This illustration shows the wealth of information on scales both small and large available in the SDSS-III's new image. The picture in the top left shows the SDSS-III view of a small part of the sky, centered on the galaxy Messier 33 (M33). The middle and right top pictures are further zoom-ins on M33.The figure at the bottom is a map of the whole sky derived from the SDSS-III image. Visible in the map are the clusters and walls of galaxies that are the largest structures in the entire universe. Figure credit: M. Blanton and the SDSS-III collaboration |
We have selected galaxies from this area which meet the criteria for being included in the original Galaxy Zoo 2 sample (for the experts - the brightest quarter of those which met Main Galaxy Sample criteria). Unfortunately in this part of the sky there is not systematic redshift survey of the local galaxies, so we will have to rely on other redshift surveys (the most complete being the 2MASS Redshift Survey) to get redshifts for as many of these galaxies as we can. We still think we'll get a lot more galaxies and, be able to make large samples of really rare types of objects (like the red spiral or blue ellipticals). Another of our main science justifications for asking you to provide us with these morphologies was the potential for serendipitous discovery. Who knows what you might find in this part of the sky. The Violin Clef Galaxy is in the DR8 imaging area and featured heavily in our science team discussions of if this was a good idea or not.
And interesting things are already being found in just a week of clicks. The new Talk interface is a great additional place for us to discuss the interesting things that can be found in the sky. For example this great system with tidal tails and a Voorwerpjie:
No comments:
Post a Comment